Det Kgl. Danske Videnskabernes Selskab. Mathematisk-fysiske Meddelelser. XVII, 3.

NOTE
 ON DIVIDED DIFFERENCES

BY

J. F. STEFFENSEN

KØBENHAVN

EJNAR MUNKSGAARD
1939

Printed in Denmark.
Bianco Lunos Bogtrykkeri A/S.

1. The number of general theorems concerning divided differences is so small that any addition to the list may, perhaps, be welcome. The unexpectedly simple theorem which forms the object of this Note seems, as far as I have been able to ascertain, to be new; it may be regarded as a generalization of Leibniz' formula for the $r^{\text {th }}$ derivate of a product of two functions.

The notation will be that of the author's book "Interpolation". Thus, for instance, $\varphi\left(x_{0} x_{1} \ldots x_{r}\right)$ will be the $r^{\text {th }}$ divided difference of $\varphi(x)$, formed with the arguments x_{0}, $x_{1}, \ldots x_{r}$. In order to save space we shall, as a rule, only write the first and the last of the arguments, where no confusion is likely to arise.

Let, then,

$$
\begin{equation*}
\varphi(x)=f(x) g(x) ; \tag{1}
\end{equation*}
$$

we propose to prove, by induction, that

$$
\begin{equation*}
\varphi\left(x_{0} \ldots x_{r}\right)=\sum_{\nu=0}^{r} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r}\right) \tag{2}
\end{equation*}
$$

It is readily ascertained that the formula is true for $r=1$, that is,

$$
\varphi\left(x_{0} x_{1}\right)=f\left(x_{0}\right) g\left(x_{0} x_{1}\right)+f\left(x_{0} x_{1}\right) g\left(x_{1}\right) .
$$

We proceed to show that, if the formula is true for one value of r, it also holds for the following value.

In order to prove this, we employ the identity

$$
\varphi\left(x_{0} \ldots x_{r+1}\right)=\frac{\varphi\left(x_{0} \ldots x_{r}\right)-\varphi\left(x_{1} \ldots x_{r+1}\right)}{x_{0}-x_{r+1}}
$$

Applying this, we find, assuming (2) to be true for some particular value of r,

$$
\left(x_{0}-x_{r+1}\right) \varphi\left(x_{0} \ldots x_{r+1}\right)=
$$

$$
=\sum_{\nu=0}^{r} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r}\right)-\sum_{\nu=0}^{r} f\left(x_{1} \ldots x_{\nu+1}\right) g\left(x_{\nu+1} \ldots x_{r+1}\right)
$$

Inserting, in this,

$$
f\left(x_{1} \ldots x_{\nu+1}\right)=f\left(x_{0} \ldots x_{\nu}\right)-\left(x_{0}-x_{\nu+1}\right) f\left(x_{0} \ldots x_{\nu+1}\right)
$$

we find

$$
\left(x_{0}-x_{r+1}\right) \varphi\left(x_{0} \ldots x_{r+1}\right)=
$$

$$
\begin{aligned}
&=\sum_{\nu=0}^{r} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r}\right)-\sum_{\nu=0}^{r} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu+1} \ldots x_{r+1}\right) \\
&+\sum_{\nu=0}^{r}\left(x_{0}-x_{\nu+1}\right) f\left(x_{0} \ldots x_{\nu+1}\right) g\left(x_{\nu+1} \ldots x_{r+1}\right)
\end{aligned}
$$

In the second sum on the right we introduce $g\left(x_{\nu+1} \ldots x_{r+1}\right)=g\left(x_{\nu} \ldots x_{r}\right)-\left(x_{\nu}-x_{r+1}\right) g\left(x_{\nu} \ldots x_{r+1}\right)$, and in the third sum we write $\nu-1$ instead of ν. Thus, we obtain

$$
\left(x_{0}-x_{r+1}\right) \varphi\left(x_{0} \ldots x_{r+1}\right)=
$$

$$
\begin{aligned}
&=\sum_{\nu=0}^{r} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r}\right)-\sum_{\nu=0}^{r} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r}\right) \\
&+\sum_{\nu=0}^{r}\left(x_{\nu}-x_{r+1}\right) f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r+1}\right) \\
&+\sum_{\nu=1}^{r+1}\left(x_{0}-x_{\nu}\right) f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r+1}\right)
\end{aligned}
$$

which reduces to

$$
\left(x_{0}-x_{r+1}\right) \sum_{\nu=0}^{r+1} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r+1}\right)
$$

so that

$$
\varphi\left(x_{0} \ldots x_{r+1}\right)=\sum_{\nu=0}^{r+1} f\left(x_{0} \ldots x_{\nu}\right) g\left(x_{\nu} \ldots x_{r+1}\right) .
$$

But this is (2) with $r+1$ instead of r, so that (2) is true for all values of r.
2. Formula (2) contains several well-known formulas as particular cases. Thus, if we make all the arguments x_{ν} tend to the same point x, we obtain, if the derivates exist,

$$
\frac{\varphi^{(r)}(x)}{r!}=\sum_{\nu=0}^{r} \frac{f^{(\nu)}(x)}{\nu!} \frac{g^{(r-\nu)}(x)}{(r-\nu)!}
$$

which may also be written

$$
\begin{equation*}
D^{r} f(x) g(x)=\sum_{\nu=0}^{r}\binom{r}{\nu} D^{\nu} f(x) \cdot D^{r-\nu} g(x) \tag{3}
\end{equation*}
$$

This is the theorem of Leibniz referred to above.
Putting next, in succession, $x_{\nu}=x+\nu, x_{\nu}=x-\nu$ and $x_{\nu}=x-\frac{r}{2}+\nu$ and making use of the relations

$$
\begin{aligned}
f(x, x+1, \ldots, x+n) & =\frac{\Delta^{n} f(x)}{n!}, \\
f(x, x-1, \ldots, x-n) & =\frac{\nabla^{n} f(x)}{n!}, \\
f\left(x-\frac{n}{2}, x-\frac{n}{2}+1, \ldots, x+\frac{n}{2}\right) & =\frac{\delta^{n} f(x)}{n!},
\end{aligned}
$$

we obtain, in analogy with (3), the three well-known relations

$$
\begin{align*}
\triangle^{r} f(x) g(x) & =\sum_{\nu=0}^{r}\binom{r}{\nu} \triangle^{\nu} f(x) \cdot \triangle^{r-\nu} g(x+\nu), \tag{4}\\
\nabla^{r} f(x) g(x) & =\sum_{\nu=0}^{r}\binom{r}{\nu} \nabla^{\nu} f(x) \cdot \nabla^{r-\nu} g(x-\nu) \tag{5}\\
\delta^{r} f(x) g(x) & =\sum_{\nu=0}^{r}\binom{r}{\nu} \delta^{\nu} f\left(x-\frac{r-\nu}{2}\right) \cdot \delta^{r-\nu} g\left(x+\frac{\nu}{2}\right) . \tag{6}
\end{align*}
$$

3. We now put

$$
\begin{equation*}
f(x)=F(t)-F(x), \quad g(x)=\frac{1}{t-x}, \tag{7}
\end{equation*}
$$

so that

$$
g\left(x_{\nu} \ldots x_{r}\right)=\frac{1}{\left(t-x_{\nu}\right) \ldots\left(t-x_{r}\right)}
$$

and

$$
\begin{equation*}
\varphi(x)=\frac{F(t)-F(x)}{t-x} \tag{8}
\end{equation*}
$$

Inserting in (2), we obtain, keeping the first term on the right apart,
$\varphi\left(x_{0} \ldots x_{r}\right)=\frac{F(t)-F\left(x_{0}\right)}{\left(t-x_{0}\right) \ldots\left(t-x_{r}\right)}-\sum_{\nu=1}^{r} \frac{F\left(x_{0} \ldots x_{\nu}\right)}{\left(t-x_{\nu}\right) \ldots\left(t-x_{r}\right)}$
or, solving for $F(t)$,

$$
\begin{gather*}
F(t)=\sum_{\nu=0}^{r}\left(t-x_{0}\right) \ldots\left(t-x_{\nu-1}\right) F\left(x_{0} \ldots x_{\nu}\right)+R, \tag{9}\\
R=\left(t-x_{0}\right) \ldots\left(t-x_{r}\right) \varphi\left(x_{0} \ldots x_{r}\right), \tag{10}
\end{gather*}
$$

where the factorial $\left(t-x_{0}\right) \ldots\left(t-x_{\nu-1}\right)$ for $v=0$ is interpreted as 1 .

This is Newton's interpolation formula with divided differences and a remainder term differing slightly from the usual form. The latter is obtained by observing that, if we put

$$
\begin{equation*}
\theta_{p} f\left(x_{0}\right)=f\left(x_{0} x_{p}\right), \quad \theta f\left(x_{0}\right)=f\left(x_{0} t\right), \tag{11}
\end{equation*}
$$

θ_{p} and θ being symbols acting on x_{0} alone, then, since $\varphi\left(x_{0}\right)=\theta F\left(x_{0}\right)$,

$$
\varphi\left(x_{0} \ldots x_{r}\right)=\theta_{r} \theta_{r-1} \ldots \theta_{1} \varphi\left(x_{0}\right)=\theta_{r} \theta_{r-1} \ldots \theta_{1} \theta F\left(x_{0}\right),
$$

or

$$
\begin{equation*}
\varphi\left(x_{0} \ldots x_{r}\right)=F\left(t x_{0} \ldots x_{r}\right), \tag{12}
\end{equation*}
$$

so that

$$
\begin{equation*}
R=\left(t-x_{0}\right) \ldots\left(t-x_{r}\right) F\left(t x_{0} \ldots x_{r}\right) . \tag{13}
\end{equation*}
$$

But from (10) we obtain in particular cases forms of the remainder which are worth noting. Thus, for instance, if all the arguments tend to the same point x, we find TAylor's formula

$$
\begin{equation*}
F(t)=\sum_{\nu=0}^{r} \frac{(t-x)^{\nu}}{\nu!} F^{(\nu)}(x)+R \tag{14}
\end{equation*}
$$

with the remainder

$$
\begin{equation*}
R=\frac{(t-x)^{r+1}}{r!} D^{r} \frac{F(t)-F(x)}{t-x}, \tag{15}
\end{equation*}
$$

the operator D acting on x.
Further, putting $x_{\nu}=x+\nu$, (9) and (10) yield

$$
\begin{align*}
F(t) & =\sum_{\nu=0}^{r} \frac{(t-x)^{(\nu)}}{\nu!} \triangle^{\nu} F(x)+R, \tag{16}\\
R & =\frac{(t-x)^{(r+1)}}{r!} \triangle^{r} \frac{F(t)-F(x)}{t-x}, \tag{17}
\end{align*}
$$

where \triangle acts on x. This is the interpolation formula with descending differences and a remainder term which has already been given by Boole ${ }^{1}$.

[^0]Finally, putting $x_{\nu}=x-\nu$, we find the interpolation formula with ascending differences

$$
\begin{gather*}
F(t)=\sum_{\nu=0}^{r} \frac{(t-x)^{(-\nu)}}{\nu!} \nabla^{\nu} F(x)+R \tag{18}\\
R=\frac{(t-x)^{(-r-1)}}{r!} \nabla^{r} \frac{F(t)-F(x)}{t-x}, \tag{19}
\end{gather*}
$$

∇ acting on x.
It is evidently easy to transform the preceding remainder terms to the usual forms.
4. It is easy to extend the formula (2) to a product of any number of functions. Thus, if
we have

$$
f(x)=f_{1}(x) f_{2}(x), \quad g(x)=f_{3}(x)
$$

we have

$$
\begin{gathered}
f\left(x_{0} \ldots x_{\nu}\right)=\sum_{\mu=0}^{\nu} f_{1}\left(x_{0} \ldots x_{\mu}\right) f_{2}\left(x_{\mu} \ldots x_{\nu}\right) \\
\varphi(x)=f_{1}(x) f_{2}(x) f_{3}(x)
\end{gathered}
$$

and

$$
=\sum_{\nu=0}^{\varphi} \sum_{\mu=0}^{\nu} f_{1}\left(x_{0} \ldots x_{\mu}\right) f_{2}\left(x_{\mu} \ldots x_{\nu}\right) f_{3}\left(x_{\nu} \ldots x_{r}\right) .
$$

Generally, if

$$
\begin{equation*}
\varphi(x)=f_{1}(x) f_{2}(x) \ldots f_{n}(x) \tag{20}
\end{equation*}
$$

we may write

$$
\begin{gather*}
\varphi\left(x_{0} \ldots x_{r}\right)= \\
=\sum f_{1}\left(x_{0} \ldots x_{c}\right) f_{2}\left(x_{c} \ldots x_{\beta}\right) f_{3}\left(x_{\beta} \ldots x_{\gamma}\right) \ldots f_{n}\left(x_{\varrho} \ldots x_{r}\right) \tag{21}
\end{gather*}
$$

the summation extending to all values of $\alpha, \beta, \gamma, \ldots \varrho$ for which

$$
\begin{equation*}
0 \leq \alpha \leq \beta \leq \gamma \leq \cdots \leq \varrho \leq r \tag{22}
\end{equation*}
$$

Thus, for instance, if $n=3$ we may at once write down

$$
\begin{aligned}
\varphi\left(x_{0} x_{1} x_{2}\right) & =f_{1}\left(x_{0}\right) f_{2}\left(x_{0}\right) f_{3}\left(x_{0} x_{1} x_{2}\right) \\
& +f_{1}\left(x_{0}\right) f_{2}\left(x_{0} x_{1}\right) f_{3}\left(x_{1} x_{2}\right) \\
& +f_{1}\left(x_{0}\right) f_{2}\left(x_{0} x_{1} x_{2}\right) f_{3}\left(x_{2}\right) \\
& +f_{1}\left(x_{0} x_{1}\right) f_{2}\left(x_{1}\right) f_{3}\left(x_{1} x_{2}\right) \\
& +f_{1}\left(x_{0} x_{1}\right) f_{2}\left(x_{1} x_{2}\right) f_{3}\left(x_{2}\right) \\
& +f_{1}\left(x_{0} x_{1} x_{2}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{2}\right) .
\end{aligned}
$$

If, in (21), we let all the arguments tend to the same point x, we get

$$
\frac{\varphi^{(r)}(x)}{r!}=\sum \frac{f_{1}^{(\alpha)}(x)}{\alpha!} \frac{f_{2}^{(\beta-\alpha)}(x)}{(\beta-\alpha)!} \cdots \frac{f_{n}^{(r-\varrho)}(x)}{(r-\varrho)!}
$$

and from this, putting $\alpha=\nu_{1}, \beta-\alpha=\nu_{2}, \ldots, r-\varrho=\nu_{n}$,
$\varphi^{(r)}(x)=\sum \frac{r!}{\nu_{1}!\nu_{2}!\ldots \nu_{n}!} f_{1}^{\left(\nu_{1}\right)}(x) f_{2}^{\left(\nu_{2}\right)}(x) \ldots f_{n}^{\left(\nu_{n}\right)}(x)$,
the summation extending to all values of $\nu_{1}, \nu_{2}, \ldots v_{n}$ for which

$$
\begin{equation*}
\nu_{1}+v_{2}+\cdots+v_{n}=r \tag{24}
\end{equation*}
$$

This is the theorem of Leibniz for a product of n functions. It may be written symbolically in the form

$$
\begin{equation*}
\varphi^{(r)}=\left(f_{1}+f_{2}+\cdots+f_{n}\right)^{r} \tag{25}
\end{equation*}
$$

with the convention that, after expanding, f^{ν} should be replaced by $f^{(\nu)}$. It should be noted that the zero powers of f cannot be omitted, since $f^{(0)}$ does not mean 1 but f.

If, in (21), we choose $x_{\nu}=x+v$, we find

$$
\frac{\triangle^{r} \varphi(x)}{r!}=\sum \frac{\triangle^{\alpha} f_{1}(x)}{\alpha!} \frac{\triangle^{\beta-\alpha} f_{2}(x+\alpha)}{(\beta-\alpha)!} \cdots \frac{\triangle^{r-\varrho} f_{n}(x+\varrho)}{(r-\varrho)!}
$$

or, in the notation (24),

$$
\left.\begin{array}{c}
\triangle^{r} \varphi(x)=\sum \frac{r!}{\nu_{1}!\nu_{2}!\ldots \nu_{n}!} \times \tag{26}\\
\triangle^{\nu_{1}} f_{1}(x) \triangle^{\nu_{2}} f_{2}\left(x+\nu_{1}\right) \ldots \triangle^{\nu_{n}} f_{n}\left(x+\nu_{1}+\cdots+\nu_{n-1}\right) .
\end{array}\right\}(26)
$$

Similarly, putting $x_{\nu}=x-\nu$, we obtain

$$
\left.\begin{array}{c}
\nabla^{r} \varphi(x)=\sum \frac{r!}{\nu_{1}!\nu_{2}!\ldots \nu_{n}!} \times \tag{27}\\
\nabla^{\nu_{1}} f_{1}(x) \nabla^{\nu_{2}} f_{2}\left(x-\nu_{1}\right) \ldots \nabla^{\nu_{n}} f_{n}\left(x-\nu_{1}-\cdots-v_{n-1}\right),
\end{array}\right\}
$$

and finally, making $x_{\nu}=x-\frac{r}{2}+\nu$,

$$
\begin{gather*}
\delta^{r} \varphi(x)=\sum \frac{r!}{\nu_{1}!\nu_{2}!\ldots \nu_{n}!} \times \\
\delta^{\nu_{1}} f_{1}\left(x-\frac{r-\nu_{1}}{2}\right) \delta^{\nu_{2}} f_{2}\left(x+\nu_{1}-\frac{r-\nu_{2}}{2}\right) \ldots \tag{28}\\
\ldots \delta^{\nu_{n}} f_{n}\left(x+\nu_{1}+\cdots+\nu_{n-1}-\frac{r-\nu_{n}}{2}\right) .
\end{gather*}
$$

It is easy to put also (26), (27) and (28) into symbolic forms; but as these are more complicated than (25) and, therefore, not so useful, they seem hardly worth recording.
5. As an application of (21) we put

$$
\begin{equation*}
f_{\nu}(x)=\frac{1}{t-x}, \quad \varphi(x)=\frac{1}{(t-x)^{n}} \tag{29}
\end{equation*}
$$

and obtain without difficulty

$$
\left.\begin{array}{c}
\varphi\left(x_{0} \ldots x_{r}\right)= \\
=\frac{1}{\left(t-x_{0}\right) \ldots\left(t-x_{r}\right)} \sum \frac{1}{\left(t-x_{\alpha}\right)\left(t-x_{\beta}\right) \ldots\left(t-x_{\varrho}\right)}
\end{array}\right\}(30)
$$

the summation extending to the values of $\alpha, \beta, \ldots \varrho$ satisfying (22).

But since the degree of the product

$$
\left(t-x_{\alpha}\right)\left(t-x_{\beta}\right) \ldots\left(t-x_{\varrho}\right)
$$

is the same as the number of the quantities $\alpha, \beta, \ldots \varrho$ which is $n-1$, (30) may also be written

$$
\left.\begin{array}{c}
\varphi\left(x_{0} \ldots x_{r}\right)= \tag{31}\\
=\frac{1}{\left(t-x_{0}\right) \ldots\left(t-x_{r}\right)} \sum \frac{1}{\left(t-x_{0}\right)^{\mu_{0}} \ldots\left(t-x_{r}\right)^{\mu_{r}}}
\end{array}\right\}
$$

the summation extending to all values of $\mu_{0}, \mu_{1}, \ldots \mu_{r}$ for which

$$
\begin{equation*}
\mu_{0}+\mu_{1}+\ldots+\mu_{r}=n-1 \tag{32}
\end{equation*}
$$

Instead of (31) and (32) we may evidently write

$$
\begin{equation*}
\varphi\left(x_{0} \ldots x_{r}\right)=\sum \frac{1}{\left(t-x_{0}\right)^{\lambda_{0}} \ldots\left(t-x_{r}\right)^{\lambda_{r}}} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{0}+\lambda_{1}+\cdots+\lambda_{r}=n+r, \quad \lambda_{\nu} \geq 1 \tag{34}
\end{equation*}
$$

It thus appears that $\varphi\left(x_{0} \ldots x_{r}\right)$ is the coefficient of z^{n+r} in the development of

$$
\begin{equation*}
\frac{\frac{z}{t-x_{0}} \cdot \frac{z}{t-x_{1}} \cdots \frac{z}{t-x_{r}}}{\left(1-\frac{z}{t-x_{0}}\right)\left(1-\frac{z}{t-x_{1}}\right) \cdots\left(1-\frac{z}{t-x_{r}}\right)} \tag{35}
\end{equation*}
$$

or the coefficient of z^{n-1} in the development of

$$
\begin{equation*}
\frac{1}{\left(t-x_{0}-z\right)\left(t-x_{1}-z\right) \ldots\left(t-x_{r}-z\right)} \tag{36}
\end{equation*}
$$

The number of terms in (33) is obtained by putting $t=1, x_{\nu}=0$ for all ν, and is therefore, according to (36), the coefficient of z^{n-1} in the development of $(1-z)^{-r-1}$, that is, $\binom{r+n-1}{n-1}$.
6. Lastly, we consider the case

$$
\begin{equation*}
f_{\nu}(x)=\frac{1}{t_{\nu}-x}, \quad \varphi(x)=\frac{1}{\left(t_{1}-x\right) \ldots\left(t_{n}-x\right)} \tag{37}
\end{equation*}
$$

assuming all t_{ν} different. Here, an abbreviation of the notation becomes necessary, and we shall write

$$
\begin{equation*}
t^{\alpha \beta}=\left(t-x_{\alpha}\right)\left(t-x_{\alpha+1}\right) \ldots\left(t-x_{\beta}\right) \tag{38}
\end{equation*}
$$

We obtain, then, from (21)

$$
\begin{equation*}
\varphi\left(x_{0} \ldots x_{r}\right)=\sum \frac{1}{t_{1}^{0 \alpha} t_{2}^{\alpha \beta} \ldots t_{n}^{\sigma_{r}}} \tag{39}
\end{equation*}
$$

the summation extending as before to (22).
But we have also, for instance by Lagrange's interpolation formula,

$$
\begin{equation*}
\varphi(x)=\frac{1}{\left(t_{1}-x\right) \ldots\left(t_{n}-x\right)}=\sum_{\nu=1}^{n} \frac{1}{K_{\nu}\left(t_{\nu}-x\right)} \tag{40}
\end{equation*}
$$

where
$K_{\nu}=\left(t_{1}-t_{\nu}\right)\left(t_{2}-t_{\nu}\right) \ldots\left(t_{\nu-1}-t_{\nu}\right) \cdot\left(t_{\nu+1}-t_{\nu}\right) \ldots\left(t_{n}-t_{\nu}\right)$,
so that

$$
\begin{equation*}
\varphi\left(x_{0} \ldots x_{r}\right)=\sum_{\nu=1}^{n} \frac{1}{K_{\nu} t_{\nu}^{0 r}} \tag{41}
\end{equation*}
$$

We therefore obtain, by comparison of (42) and (39), the identity

$$
\begin{equation*}
\sum^{\eta} \frac{1}{t_{1}^{0 \alpha t} t_{2}^{\alpha \beta} \ldots t_{n}^{\varrho r}}=\sum_{\nu=1}^{n} \frac{1}{K_{\nu} t_{\nu}^{0 r}} \tag{43}
\end{equation*}
$$

In the particular case where $n=2$ this becomes

$$
\begin{equation*}
\sum_{\nu=0}^{r} \frac{1}{t_{1}^{0 \nu} t_{2}^{\nu r}}=\frac{1}{t_{2}-t_{1}}\left(\frac{1}{t_{1}^{0 r}}-\frac{1}{t_{2}^{0 r}}\right) \tag{44}
\end{equation*}
$$

[^0]: ${ }^{1}$ Finite Differences, $3^{\text {rd }}$ ed., p. 146.

